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X-ray scattering factors for bonded hydrogen atoms are derived for the case where the aspherical electron 
density distribution due to the chemical bonding, is approximated by additional scattering centres. It is 
assumed that in the vicinity of the proton the electron density does not change much when the bond is 
formed. 

The isolated-atom model, used in conventional structure 
determination, can be corrected in a purely empirical way 
for bonding effects by approximating the excess density 
between atoms by additional scattering centres and the 
atomic cores by ions carrying some fractional charge 
(Brill, Dietrich & Dierks, 1971). This accounts for the 
plausible assumption that the electron cloud within the 
atomic cores will not be changed much by the chemical 
bonds, since the radial electric field of the nucleus domi- 
nates there. A verification of this assumption can be seen 
in the fact that the X-ray scattering factors of different 
ionic states of an atom are almost identical for the outer 
reciprocal space, i.e. the high frequency parts of the Fourier 
spectra of the density are nearly the same, because the 
density details involving large density gradients (as within 
the atomic cores) are almost the same. 
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Fig. 1. Comparison of X-ray scattering factor functions for the 
neutral atoms to the scattering curves for the ions of (a) Li 
and (b) Ti. Representation l o g f  versus (sin 0/2) z. 

For all atoms except H the scattering factors needed for 
the atomic cores can be interpolated from scattering factor 
tables in the International Tables for X-ray Crystallography 
(1974). For first-row atoms it is more convenient to use the 
L-shell projection method of Stewart (1970).* 

For the hydrogen atom an interpolation between H ÷ and 
H would mean using just one scale factor for the whole H 
scattering factor. This would scale also the high-frequency 
part of the table, so the maximum absolute change in density 
would occur at the proton, which is certainly wrong. Ac- 
cording to the above considerations a better approximation 
would be to keep the high-frequency part of the H scattering 
curve constant and reduce only the low-frequency part. For 
a H ÷~ scattering factor table the maximum value, f ( 0 ) =  
1-,~, is known. But the question is how to combine this 
value with the high-order tail of the H scattering curve, and 
where the beginning of this tail is to be assumed. Surely, 
any answer must be to some extent arbitrary, but this may 
be minimized if some general features of the f curves are 
taken into account. The curves should be considered in a 
coordinate system in which they show minimum curvature, 
especially in the low-order region. This condition is fulfilled 
best by the coordinates log f and (sin 0/2) 2. In Fig. 1 the 
scattering curves of Li and Ti are compared to the scattering 
curves of their ions using the logfversus (sin 0/2) 2 represen- 
tation. It can be seen that the scattering curves of the ions 
either join the curve of the neutral atom tangentially from 
below or cross it and stay slightly above it for some interval. 
The latter case is typical for ions which have lost all the 
electrons of their outermost shell. So, for H ÷ ~ a curve which 
does not cross the H curve is suggested. 

From the shape of the curve it can be concluded that 
parabolic functions of the form 

log f (x )  = ao + alx + a2x 2 , (1) 

with x = (sin 0/)32, can be fitted well to the low-order region 
of the scattering curves.t 

Table 1. Second and third points of  form factor tables for 
three examples and coefficients at in (1) computed from them 

Second Third 
point point 

A -  1 A -  1 ao al a2 
H -1 0"05 0"10 0"6931 - 109"4 4632 
H 0"05 0"10 0"0000 -22"06 111"2 
H ÷°'3 0"40 0"50 -0"3567 - 12"96 15"21 
H +°'5 0"50 0"60 --0"6931 -9"607 7"198 
H +°'7 0"60 0"70 -1"204 -6"822 3"403 

* For this suggestion I am indebted to Professor R. All- 
mann, Marburg. 

t Therefore, this type of function is also useful for accurate 
interpolation of scattering factor tables (Dietrich, 1976). 
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Using this function it is easy to find the best tangential 
connexion to the high order part of the H scattering curve. 
One has to leave out as many low-order points of this part 
as necessary before obtaining a H +6 curve that crosses the 
H curve. The results for g = 0.3, 0.5, and 0.7 are summarized 
in Table 1. The second point of each form factor table is the 
beginning of the high order part of the H table preserved. 
The coefficients at found from the first three points of each 
table are compared to those calculated for the first points 
of the H-1 and H tables. Fig. 2 shows the three resulting 
scattering curves. The scattering factor tables for H and 
H -  t plotted for comparison in Fig. 2 are taken from Vol. 
III of the International Tables for X-ray Crystallography 
(1962), because the tables in Vol. IV (1974) give poor curves 
owing to rounding effects. 
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Fig. 2. Scattering factor curves for H +°'3, H +°'s, n +°'7 using 
high-order tails of the H curve starting at 0.4, 0.5 and 0.6 N-t  
respectively and using equation (1) for interpolation. 
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1237 four-dimensional space-group types of the 'low-symmetry crystal classes' have been listed by Kuntse- 
vich & Belov [Kristallografiya (1971). 16, 5-17, 268-272]. Comparison of this list with the results of Brown, 
Billow, Neubiiser, Wondratschek, and Zassenhaus shows that three space-group types are listed twice and 
one space-group type is missing. The crystal classes considered by Kuntsevich & Belov thus contain 1235 of 
the 4783 types of space groups of R4. 

Crystallography in four-dimensional space R4 has drawn 
increasing interest during the last years. Reasons for this 
may be: possible applications in physics, better insight into 
dimension-independent features of crystallographic ob- 
jects, mathematical interest in integer matrix groups, and 
the availability of large computers for the performance of 
the necessary calculations. 

For the crystal families, crystal systems, crystal classes, 
and Bravais-types we refer to Wondratschek, Billow & 
Neubtiser (1971) and the literature quoted there. In a joint 
project of Brown, Btilow, NeubiJser, Wondratschek, and 
Zassenhaus (referred to as BBNWZ) also a complete list 
of all affine equivalence classes of space groups of R4 was 
determined, their number being 4783. 

Those space groups of R4 for which the linear parts of 
all symmetry operations have order not exceeding two, i.e. 
those corresponding to the triclinic to orthorhombic space 
groups in R3 had been derived and listed by Kunstevich & 
Belov (1971) (referred to as KB), using geometric arguments. 
They found 1237 types of such space groups. 

Although KB did admirable work, errors are almost un- 
avoidable in computations by hand. There are discrepancies 
in relation to the tables of BBNWZ, which contain only 
1235 affinely-non equivalent space group types of this kind. 

A closer inspection shows the following discrepancies. 
In KB crystal class VIII, X, and XI the KB numbers of 
space-group types exceed the BBNWZ numbers of space- 
group types by one, in XV BBNWZ have listed one space- 
group type more than have KB. 

KB characterize their space-group types by certain sets 
of generators. The symbols used are slightly modified 
Hermann (1949) symbols. The generating matrices of a 
representation of each space-group type can be determined 
easily from these symbols, e.g. space-group type VIII, 43 
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